

Networking Essentials

Josh Noble MOREnet Network Consulting

Quickly --- About Me

- Hello! I am Josh Noble
- I have 20 years in IT
- Started career at an ISP and working at a school district that was also a MOREnet member!
- Been at MOREnet for 5 years
- Loves pinball, playing, fixing, staring at, dreaming about...
- Enjoys Halloween, mostly for the GM Monster Cereal!
- josh@more.net

What We're Doing This Morning

- High level overview of many networking subjects, including some tips and tricks
- If you have questions, we will have time at the end of each section
- Any super crazy advanced questions, find me or one of the other MOREnet Network Consultants during the Tech Summit
- Audience participation is highly encouraged and will be rewarded!
- Yes, we will most certainly have a break

Shameless MOREnet Network Consulting Plug

- What we do?
- How we do it?
- How to reach us?
 - help@more.net
 - 573-884-8694
 - Put case in on MyMOREnet
- Who can work with us from your organization?
- How often can you work with us in Network Consulting?

Networking Protocols

- What is a protocol?
 - Simply put, it is a set of rules that defines something
- How does this apply to networks?
 - Set of rules that defines how data is transmitted over a network
- Example Protocols
 - TCP, UDP, IP, HTTP, DNS, FTP
- What is your favorite protocol?

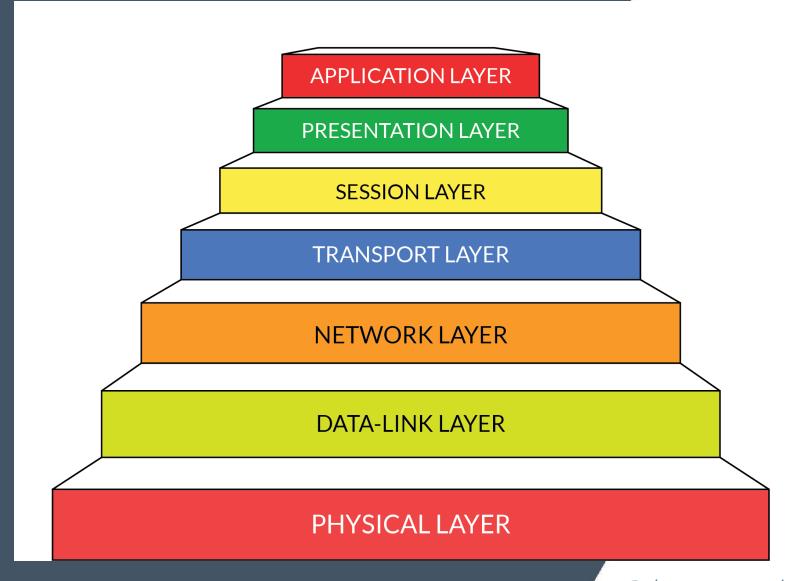
Why Do We Need Protocols?

- Establish and terminate connections
- Define what format data is transmitted
- Helps determine what to do if errors take place and what to do if data gets lost
- Allows us (humans) to see the data

Why Do We Need Protocols?

Network Devices

- Switches
 - Layer 2 are most common
 - Layer 3 if you need routing on the switch
- Access Points
 - Layer 2
- Routers
 - Layer 3
- Firewalls
 - Layer 3


Networking Models

- OSI Model
 - Open Systems Interconnection
- What is it?
 - A standardized and layered way to describe the flow of network data
- Why do we need it?
 - Helps us troubleshoot network issues and understand how networks work. Most troubleshooting occurs in layers 1-4

OSI Model Layers – In a Nutshell

- 7 Different Layers
 - Application Allows access to network resources
 - Presentation Translates, encrypts and compresses data
 - Session Establish, manage and terminate sessions
 - Transport Provides reliable data delivery
 - Network Move packets from source to destination
 - Data Link Organizes bits into frames
 - Physical Transmits bits and physical connections

OSI Model

Layer 1 - Physical Layer

- Bits and Bytes live here
- Network Interface Card (NIC)
- Electrical signals are sent. Charge is a 1, no charge is a 0
- We start simple, the network cabling. Is your device plugged in? Is your cable good?
- This is often overlooked as we typically assume our cables are good, but they do indeed go bad. Keep spares handy!
- MAC address vendor lookup tool https://www.wireshark.org/tools/ouilookup.html

Layer 2 – Data Link

- MAC Addresses
 - Unique hardware address that every network interface card (NIC) has
- Ethernet Frames live here https://en.wikipedia.org/wiki/Ethernet_frame
- Most switches are layer 2
- Access Points
- Troubleshooting? Device plugged in, good cable, but still can't see other devices on the network? Look for link lights on NIC and switch that it is plugged into.
- arp a from a command prompt shows arp cache on a Windows device

80 00 20 7A 3F 3E **Destination MAC Address**

80 00 20 20 3A AE Source MAC Address

08 00 EtherType

MAC Header (14 bytes) IP, ARP, etc.
Payload

Data

(46 - 1500 bytes)

00 20 20 3A CRC Checksum

(4 bytes)

Ethernet Type II Frame (64 to 1518 bytes)

Layer 3 - Network

- Routing occurs here
- IP addresses (we will go more in depth on them later)
- Layer 3 switches (switches that can do routing)
- Packets live here <u>https://en.wikipedia.org/wiki/Network</u> <u>packet</u>
- Troubleshooting? Do you have an IP address (ipconfig)? Can you PING another device?
- Nslookup to translate hostname to IP address

Layer 4 – Transport

- TCP and UDP
- TCP is a connection-oriented protocol.
 Cares about data getting to destination and retransmits if any data is lost
- UDP is connectionless. Cares about getting there quickly
- Both use certain ports for certain applications that we will talk about later
- Our packets get organized (segmentation,) and reassembled here

Layer 5 - Session

- How your computer/device handles multiple applications using the network at the same time
- Termination of connections

 netstat -a can show you sessions from a command prompt!

Layer 6 - Presentation

- Data Conversion and formatting
- Some encryption
- Compression
- Presents to the Application Layer
- JPEG, MIDI, GIF, etc

Layer 7 - Application

- The most visible part of the network for end users
- Email applications, web browsers etc.
- Buzzword time! *Layer 7 Firewall*. Firewall that can sort traffic based on applications

For Fun – Layer 8 – The User Layer

- Problem that exists between the keyboard and the chair
- Can't get to Facebook, so internet must be down
- Is not sure why their computer is soooo slow
- Once brought in home router, plugged in, and brought down the entire network...

Remembering the Layers

 Here are a couple of mnemonics to help

All

People

Seem

To

Need

Data

Processing

Application

Presentation

Session

Transport

Network

Data Link

Physical

Please

Do

Not

Tell

Secret

Passwords

Anytime

Troubleshooting with OSI Which layer does each step belong to?

- Is it plugged in?
- Is there a link light?
- Do you have an IP address?
- Can you ping your gateway?
- Can you ping your DNS server?
- Can you ping the hostname of your website?
- Can you open the website in another browser?

OSI MODEL QUIZ TIME!!!!

- Hope you paid attention!
- We need a 90% or better to get lunch!
- http://www.gocertify.com/quizzes/osi/osi-1.html

OSI Model Links

- OSI in action
 http://www.rebeladmin.com/2
 014/06/osi-in-action/
- Layers of OSI Model Explained <u>https://www.gurugg.com/laye</u> rs-of-osi-model.html

OSI Conclusion

- Unless you plan to take a network certification test, I would recommend focusing on the first 4 layers to aid in troubleshooting
- Any questions on OSI?

IP Addressing

- IP addresses are a 32 bit sequence of 1s and 0s
- It is a way to identify devices on a network
- Each group of 8 bits is called an octet
- Examples
 - 192.168.1.150
 - 150.199.8.1
 - 8.8.8.8
 - 11000000.10101000.00000001.11001000
- IP to binary calculator <u>https://miniwebtool.com/ip-address-to-binary-converter/</u>

How Does Your Network Use IP Addressing?

- Do you have static IP addresses on your network? (Do you have to manually assign an address every time you get a new computer)?
- Do you have a DHCP server that handles all of your IP addresses? This is usually a Windows server or your firewall (Do you simply plug a new computer into your network and it can get to the internet)?
- Do you know your IP scheme and subnet mask?
- We can help you determine this if you aren't sure
- Subnet Calculator - <u>https://www.calculator.net/ip-subnet-</u> calculator.html

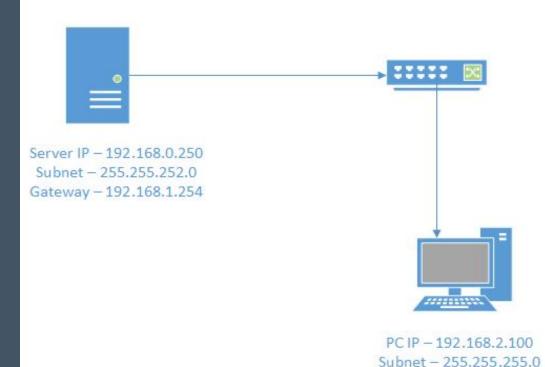
Dynamic Host Configuration Protocol (DHCP) Server

- One of the most important roles on your network
- DHCP server enables computer to request IP address and other parameters (DNS, Gateway, lease time, etc.)
- Typically resides on server, firewall, or router
- Uses Bootstrap Protocol (BOOTP)
- DORA Discovery, Offer, Request, Acknowledgement
- https://en.wikipedia.org/wiki/Dynamic _Host_Configuration_Protocol

Public vs Private

- Public IP addresses are limited. There are about 4.3 billion that can be used
- There are about 7.8 billion people in the world
- Private IPs are what most of us use on our local area networks
- Find out what your public IP address is https://www.ipchicken.com/

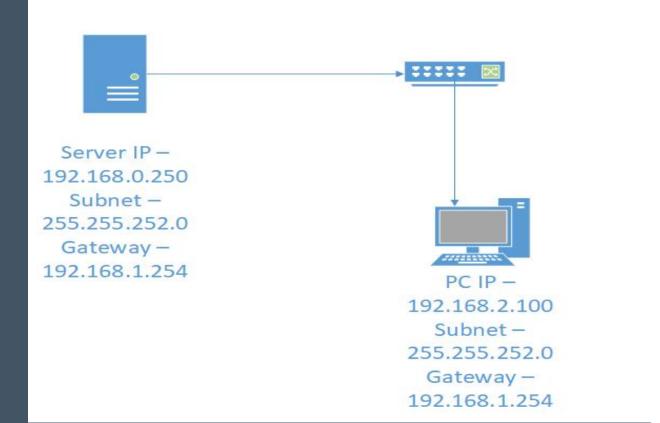
IP Troubleshooting


- Make sure your device is getting an IP? Use ipconfig to verify.
- Can you ping other devices on the network? Use PING
- Can you ping the gateway?
- Can you tracert to host?
- Commands for troubleshooting ipconfig /all ipconfig /flushdns - ping 8.8.8.8 - tracert amazon.com and then amazon.co.uk to compare
- WHOIS IP Lookup https://www.ultratools.com/tools/ipWhoisLookup
- Angry IP Scanner Scans specified subnet to show what IP addresses are taken https://angryip.org/

Troubleshooting Example

Will the PC be able to reach the server?

Gateway - 192.168.1.254

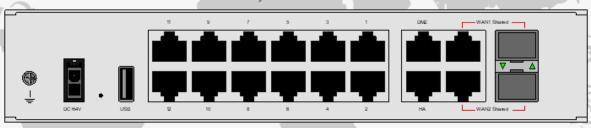


Be better connected.

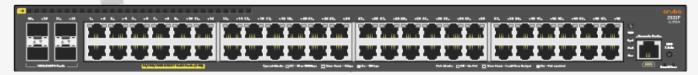
Troubleshooting Example

Now will the PC be able to reach the server?

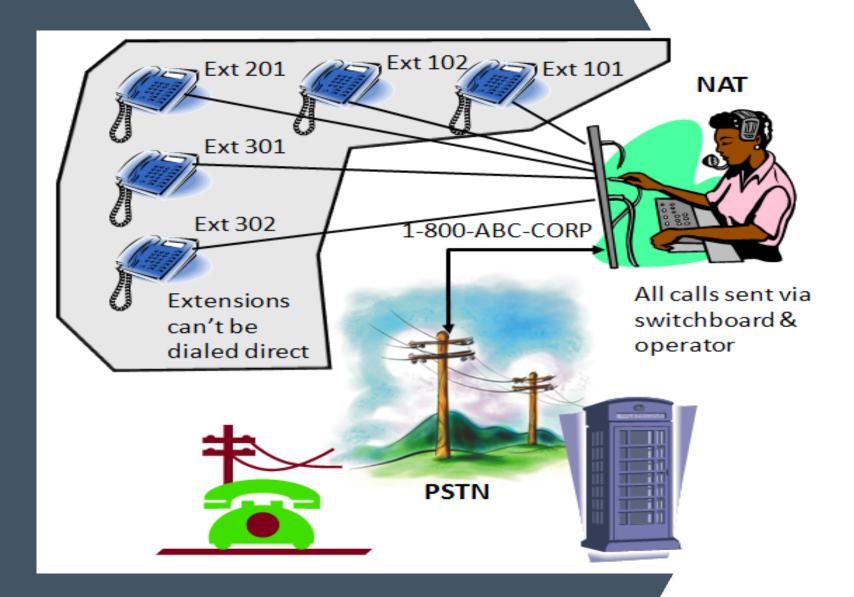
Network Address Translation (NAT)


- In order to allow us all to get on the public internet, most of us use NAT
- NAT allows you to only use one public IP address for ALL of your devices
- NAT'ing is typically done on your firewall
- PAT (Port Address Translation) is used to gain access to servers etc from outside your network

EXAMPLE OF TYPICAL NAT


MOREnet Router - 150.199.8.254

Library Firewall Outside (Public IP address) - 150.199.8.253



Library Firewall Inside (Private IP Address using NAT) 192.168.1.254

Library switch

IP or NAT Questions?

TCP and UDP Ports

- Certain network protocols used certain TCP/UDP ports
- Important for firewall troubleshooting
- 65535 possible TCP and UDP ports
- 0-1023 are well known ports
- Example https://www.google.com:443

Common TCP/UDP Ports

Here are some worthy TCP ports to remember!

- HTTP 80
- HTTPS 443
- SSH 22
- SMTP 25

UDP Ports to remember:

- DNS 53
- NTP 123
- https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_num bers
- Anyone have any unique ports that they have had to open up for certain education testing or other websites?

QUIZ TIME!

- TCP/UDP Port Quiz
- Let's see how we do
- 82% or better for free lunch, otherwise organizations that start with the letter "C" will be buying!
- https://www.examcompass.com /comptia-network-pluscertification-exam-n10-007-tcpand-udp-ports-quiz

Any Other Questions?

- Any additional questions or challenges that you are facing?
- Any good TCP/IP stories?

Wireless Networking

- 802.11 is a standard that defines how wireless devices connect and how to secure the connection
- IEEE sets these standards
- Are you familiar with all the different types?
 802.11a/b/n/g/ac/ax?
- Wi-Fi numbers now correspond with each 802.11 standard to make it easier for average users to understand

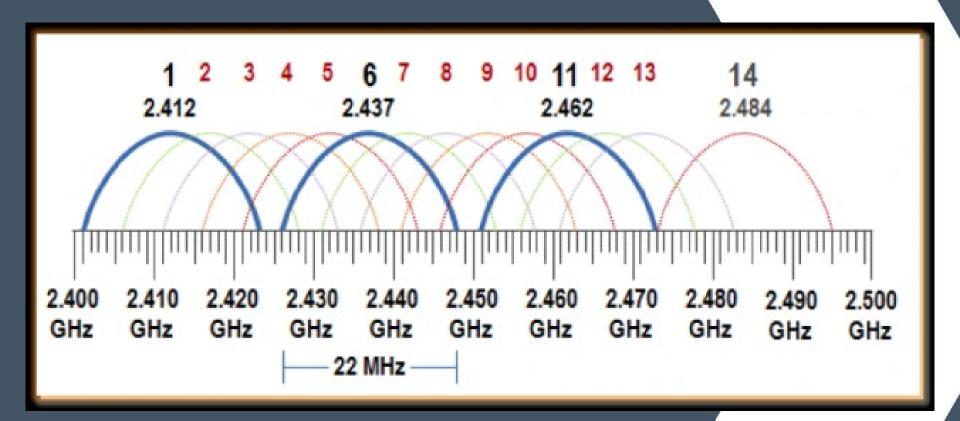
Wi-Fi Versions

- Wi-Fi 1 = 802.11b 1999
- Wi-Fi 2 = 802.11a 1999
- Wi-Fi 3 = 802.11g 2003
- Wi-Fi 4 = 802.11n 2009
- Wi-Fi 5 = 802.11ac 2013
- Wi-Fi 6 = 802.11ax 2019

Wireless Frequency

- There are two frequencies that wireless networks run on – 2.4GHz and 5Ghz
- Do you know what frequency your wireless network is running on?
- Do you know what advantages and disadvantages there are for both?

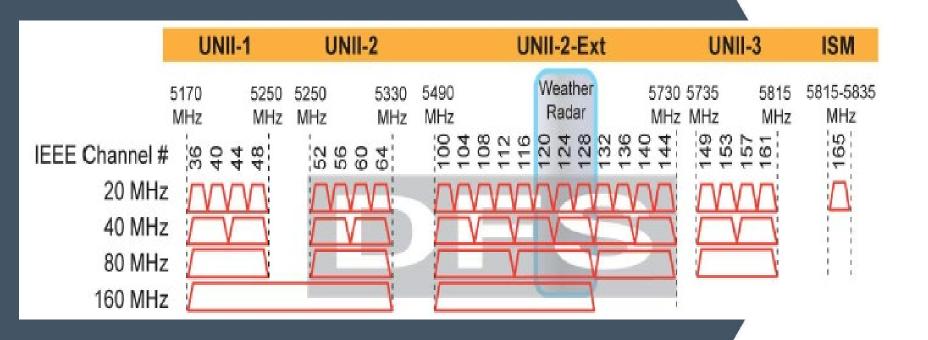
2.4GHz vs 5GHz



2.4 GHz Advantages/Disadvantages

- Only 3 usable channels available for Wi-Fi
 - 1, 6, and 11
- Other devices can interfere
 - Microwaves, cordless phones, garage doors etc
- Speeds not as fast
- May need to turn off 2.4 radios in densely deployed areas
- Can penetrate walls/objects

2.4 GHz Channels



5Ghz Advantages/Disadvantages

- Instead of the 3 available nonoverlapping channels that 2.4 offers, 5GHz gives us 23
- With all those channels we can start bonding, so we can combine up to 8 channels for faster speeds (don't do this!!!)
- Does not travel as far as 2.4GHz
- Attenuation is greater on 5Ghz (does not penetrate walls as well)

5GHz Channels

Dynamic Frequency Selection (DFS) Channels

- Channels 52-144 are DFS Channels
- These channels are shared with radars and may or may not be available to use
- Your APs and wireless controller will detect if these are used and if not, you can use them
- If channels are in use, your AP can move to another channel automatically (kicks clients off)
- You will probably need to go to the settings on your controller and enable "Use DFS Channels"
- Tons of info on DFS here http://wifinigel.blogspot.com/2018/05/the-5ghzproblem-for-wi-fi-networks-dfs.html
- List of WLAN channels https://en.wikipedia.org/wiki/List_of_WLAN_channels
- FCC Info https://apps.fcc.gov/oetcf/kdb/forms/FTSSearchResultPage.cfm?switch=P&id=27155

Wireless Interference

- When more than one AP use the same channel as another one in close proximity, it can cause interference
- Interference can cause major slowness on your wireless network
- If using 2.4 band, make sure to come up with a channel plan
- Most wireless controllers can do the channel planning and power settings automatically, even with that, we often still see interference in densely deployed areas

Wireless Interference cont.

- Let's take a look at what kind of wireless APs we can see from here.
- There are many free Wi-Fi Analyzers. We are going to use Acrylic's free version.
- https://www.acrylicwifi.com/e n/downloads-free-licensewifi-wireless-networksoftware-tools/

Wireless Controllers

- Can handle the configuration of your access points
- Can adjust channels and power to detect and avoid interference
- Can be hardware or cloudbased

Wireless Security

- There are a few different types of wireless authentication that we run into
- Open System Authentication
- PSK (Pre-Shared Key) is the most common
- PPSK Private Pre-Shared Key
- MAC address Filtering
- 802.1x Uses RADIUS, transparent to users

Proper Installation of APs

- How are you installing your access points?
- There are ceiling and sometimes wall mounts available for enterprise grade access points
- Will you have one in each classroom?

Wireless and Building Materials

- Did you know that the material that your walls/ceilings/floor are made out of can drastically affect your wireless coverage?
- Concrete and metal are the worse for your wireless signal
- Drywall won't absorb too much
- 2.4GHz won't have as many issues penetrating building material

Using a Wireless Planning Map

- Most wireless controllers come with an option to create a planning map
- You will need a floorplan that is to scale
- Let's look at the MOREnet office and play around with our Extreme/Aerohive controller

Wireless Site Survey

- Can be useful if you have dead zones or areas where you suspect there is a lot of interference.
- MOREnet offers these as a for fee service. We have a NetScout (Fluke) Optiview XG.
- If you just have a small area and want a free DIY option, look at Ekahau HeatMapper
- https://www.ekahau.com/product s/heatmapper/overview/

Useful Wireless Terms

- MIMO Multiple Input, Multiple Output
- MU-MIMO Multi Users, Multiple Input, Multiple Output
- Spatial Stream Independent and separately coded stream
- 2x2, 3x3, 4x4 Number of antenna supporting number of spatial streams
- RSSI Received Signal Strength Indicator Your wireless signal strength. Strive for -67dBm or better
- SNR Signal-to-Noise Ratio Difference between received wireless signal and noise floor
- There will be links at the end for each of these terms!

Powering our Access Points

- How do we power those properly mounted access points that are in the ceiling?
- We need either a Power Over Ethernet (PoE) enabled switch, or wireless power injectors
- PoE switch is the preferred method

Power Over Ethernet

- Enables your network cables to carry low voltage power
- You only need one cable for data and power
- Can power your access points, VOIP phones, cameras etc.
- 802.3af is standard Type 1 PoE
- 802.3at is Type 2 and is often referred as PoE+
- Can transmit up to 100 meters (328 ft)

PoE Tips

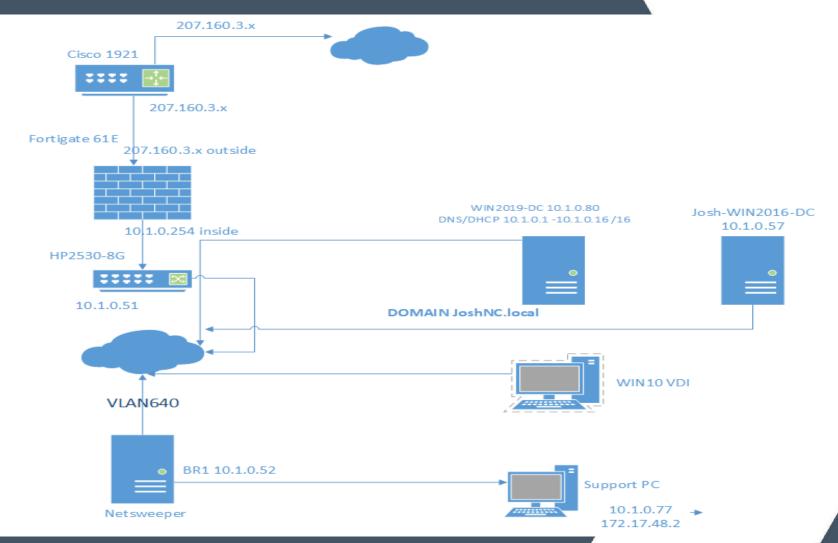
- When purchasing a PoE switch make note of how much power will be used by all of your devices, this is noted as PoE power budget
- Your switches power budget is the maximum amount of power that can be dispersed to your switch ports
- Check specs on your access points and the switch itself
- 802.3af PoE can give you about 15 Watts per port
- 802.3at PoE+ can give you 30Watts per port
- PoE Calculator http://poe-world.com/Calculator/
- HP/Aruba command example for budget
- https://techhub.hpe.com/eginfolib/networking/docs/switches/WB/15-18/5998-8162_wb_2920_mcg/content/cho3s05.html

Questions?

- Any questions on wireless and PoE?
- Any interference or other horror stories to share?

Wireless Links

- Spatial Streams Explained https://www.digitalairwireless.com/articles/blog/wi-fi-spatial-streaming-explained
- MIMO and MU-MIMOhttps://www.pcworld.com/article/ 2928725/how-mu-mimo-wi-fi-works.html
- SNR and RSSI https://community.arubanetworks.com/t 5/Controller-Based-WLANs/What-isthe-relationship-between-data-rate-SNRand-RSSI/ta-p/178312



Network Documentation

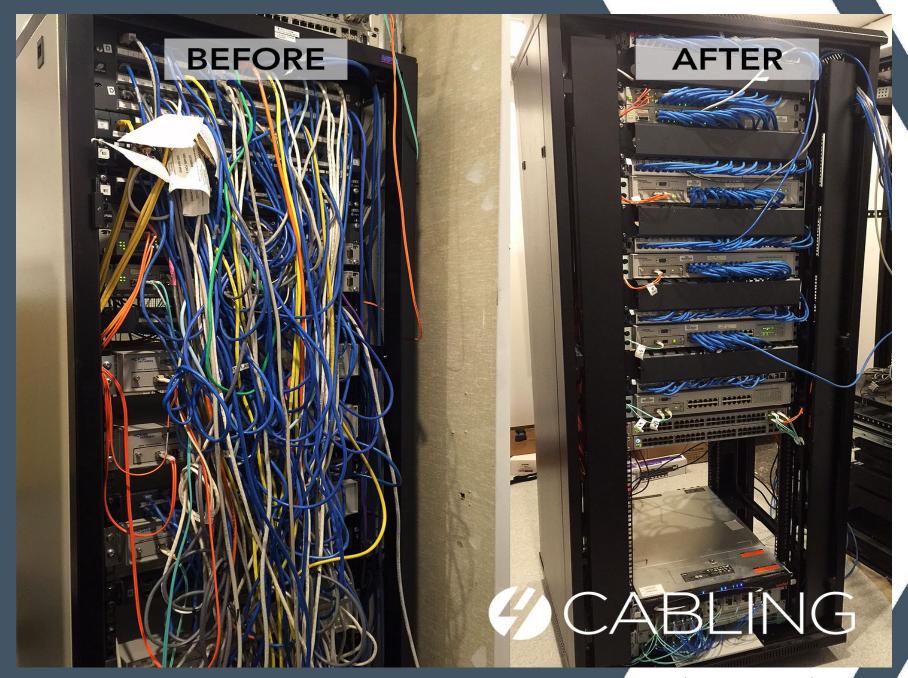
- Do you have documentation on your network?
- What things are you documenting?
- We will discuss items that are helpful to have and will expedite your troubleshooting efforts

Network Diagrams

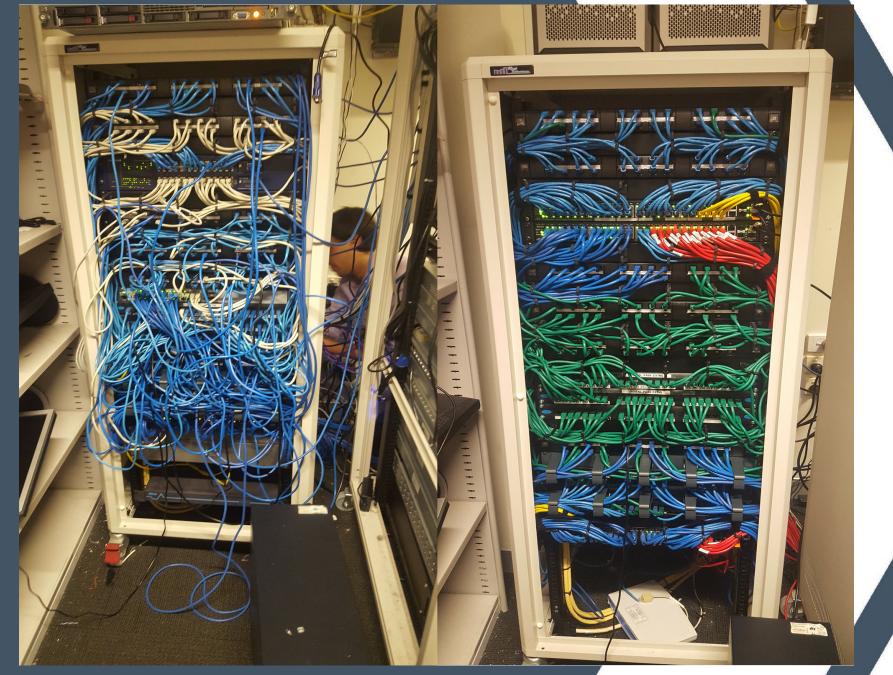
Network Diagrams cont.

- Document major devices and IP addresses etc.
- Servers and their roles
- Microsoft Visio most common

- Two free options
- https://cloud.smartdraw.com/
- https://draw.io


Helpful Documents

- Have all static IP addresses documented, both public and private
- Label and document all network drops and switch ports
- Document when licenses expire as well as when support contracts are due
- Keep this up to date!


How Organized is Your Network?

Are you a before or an after?

Be better connected.

Be better connected.

Network Organization

- Hopefully your network is more like the "after" in examples
- Do you have a rack or racks for your network gear?
- Do you have vertical and horizontal cable management?
- If you answered no to either of these, please consider adding to your budget
- If someone else manages the network, consider having them strive towards our "after" examples

Data Center, NOC, Server Room Best Practices

- Whatever you call it...it needs certain items to be "happy"
- Do you have separate A/C for your room?
- Do you have adequate power and use UPS's?
- Who has access to your room?
- Any sensors to detect overheating or water?

Group Discussion -How Are You Doing Content Filtering?

- Let's discuss different ways of doing your web/content filtering
- Do you have a dedicated filter, or a NGFW (Next Gen Firewall?)
- Are you filtering devices that go offsite?
- What vendors have been the best?
 How about the worst?
- Are you filtering HTTPS? How are you dealing with certificates?

Thanks for your time!

Josh Noble josh@more.net

Be better connected.

(800) 509-6673 www.more.net

